Skip to content
Menu
machinelearning.to
  • Home
  • Contact
machinelearning.to

Learn Machine Learning:

Mathematics:

  • Linear Algebra
  • Calculus
  • Optimization Theory

Programming:

  • Python Tutorials
  • Python Skills
  • Python Pipeline
  • Python Topics
  • Python Libraries

Probability & Statistics:

  • Probability Distributions
  • Bayesian Statistics
  • Time Series
  • Linear Models
  • Multivariate Statistics
  • Sampling
  • Hypothesis Testing

Algorithms:

  • Data Structures
  • Search Methods
  • Sorting
  • Hash Tables
  • Heaps
  • Trees
    • Binary Trees
    • AVL Trees
    • Red-Black Trees
  • Graphs
  • Lists
  • Stacks
  • Queues

Data Collection:

  • Questions to ask
  • Data Mining
  • Types of data
    • Structured Data
      • Nominal/Categorical Data
      • Numerical Data
      • Ordinal Data
      • Time Series Data
    • Unstructured Data

Data Preparation:

  • Exploratory Data Analysis
  • Data Pre-Processing
    • Tokenization
    • Handling missing values
      • Feature Imputation
      • Missing value prediction
      • Omitting the columns
      • Creating the category
      • Choosing an algorithm that supports the missing values
    • Featurizing
      • Feature Selection
      • Feature Encoding
      • Feature Normalization
      • Feature Engineering
    • Data Wrangling
    • Vectorizing
    • Dealing with Imbalances
  • Data Splitting

Training the Model:

Choosing an algorithm:

  • Neural Networks
    • Feedforward Neural Networks
    • Convolutional Neural Networks (CNNs)
    • Recurrent Neural Networks (RNNs)
    • Autoencoders
    • Long Short Term Memory (LSTM) Cells
    • Restricted Boltzmann Machines (RBMs)
    • Generative Adversarial Networks (GANs)

  • Supervised Learning Methods
    • Classification:
      • Naive Bayes
      • Decision Trees
      • k-Nearest Neighbors (kNN)
      • Support Vector Machines (SVMs)
      • Logistic Regression
      • Random Forest
    • Regression
      • Linear Regression
      • Support Vector Regression
      • Polynomial Regression
      • Ordinary Least Squares
        • Lasso Regression
        • Ridge Regression
        • ElasticNet Regression

  • Unsupervised Learning Methods
    • Association Rule Learning
      • Apriori
      • Eclat
    • Clustering
      • k-Means Clustering
      • Spectral Clustering
      • Hierarchical Cluster Analysis (HCA)
      • Expectation Maximization
    • Visualization and Dimensionality Reduction
      • Principal Component Analysis (PCA)
      • Kernel PCA
      • Locally-Linear Embedding (LLE)
      • t-distributed Stochastic Neighbor Embedding (t-SNE)
      • Manifold Learning

  • Semi-Supervised Learning Methods
    • Reinforcement Learning
    • Generative Models

  • Self-Supervised Learning Methods

  • Types of Learning
    • Batch Learning
    • Online Learning
    • Transfer Learning
    • Active Learning
    • Ensemble Methods
  • Underfitting
  • Overfitting
  • Regularization
    • L1 Regularization
    • L2 Regularization
  • Dropout
  • Hyperparameter Tuning

Model Analysis/Evaluation


Serving the Model


Making Predictions


Retraining the Model

Status: Online

All pages will be updated and added to, thank you for your patience!

Categories

Quick Links:

  • ML Tutorials
  • ML Everyday Challenge – Anjum Ismail
  • ML Discussions
  • ML Applications
  • ML News
  • ML Ops
  • ML Books
  • ML Careers
  • ML Researchers
  • ML Podcasts
  • ML Papers
  • ML Domains
  • ML Ethics
  • ML Certificate Programs
  • ML Degree Programs

Recent Posts:

  • Tutorials: Towards AI – Machine Learning Fundamentals
  • Tutorial: KDnuggets – Retraining the Model
  • Tutorial: Siddhardhan – Machine Learning Models
  • Tutorial: Siddhardhan – Machine Learning Projects
  • Tutorial: Siddhardhan – Python Basics for Machine Learning

RSS arxiv.org Computer Science – ML RSS Feed

  • Studying Limits of Explainability by Integrated Gradients for Gene Expression Models. (arXiv:2303.11336v1 [q-bio.GN])
  • Neural Message Passing for Objective-Based Uncertainty Quantification and Optimal Experimental Design. (arXiv:2203.07120v3 [cs.LG] UPDATED)
  • CoReS: Compatible Representations via Stationarity. (arXiv:2111.07632v2 [cs.CV] UPDATED)
  • DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing. (arXiv:2111.09543v3 [cs.CL] UPDATED)
  • Sharpness-aware Quantization for Deep Neural Networks. (arXiv:2111.12273v5 [cs.CV] UPDATED)

RSS arxiv.org Statistics – ML RSS Feed

  • Solving High-Dimensional Inverse Problems with Auxiliary Uncertainty via Operator Learning with Limited Data. (arXiv:2303.11379v1 [stat.ML])
  • Graph Kalman Filters. (arXiv:2303.12021v1 [cs.LG])
  • Long-tailed Classification from a Bayesian-decision-theory Perspective. (arXiv:2303.06075v2 [cs.LG] UPDATED)
  • Statistical Analysis of Karcher Means for Random Restricted PSD Matrices. (arXiv:2302.12426v3 [stat.ML] UPDATED)
  • Simplifying Momentum-based Riemannian Submanifold Optimization. (arXiv:2302.09738v2 [stat.ML] UPDATED)

Sites We Like:

  • madewithml
  • Mr. Daniel Bourke
  • Tech with Tim
  • https://pythonprogramming.net
  • geeksforgeeks
  • mlexpert
  • Chip Huyen
  • /r/MachineLearning
  • /r/LearnMachineLearning
  • machinelearningmastery
  • paperswithcode
  • towardsai
  • kdnuggets
  • Analytics Vidhya
  • William Rinehart – Resource DB

YouTube Channels We Like

  • Sentdex
  • freeCodeCamp.org
  • Clément Mihailescu
  • Tech With Tim
  • 3Blue1Brown
  • Aaron Jack
  • Statquest with Josh Starmer
  • Ken Jee
  • Daniel Bourke
  • DeepLearningAI
  • Mike Dane
  • Khan Academy
  • Keith Galli
  • Lex Fridman
  • Professor Leonard
  • Part Time Larry
  • Jon Krohn
  • Tübingen Machine Learning
  • Shai Ben-David
  • Krish Naik

Help support this site:

Buy me a coffee

©2023 machinelearning.to