Skip to content
Menu
machinelearning.to
  • Home
  • Contact
machinelearning.to

Probability & Statistics

Posts:

  • Demo: Brown University – Probability & Statistics – Visualized
  • Book: Dekking, Kraaikamp, Lopuhaä & Meester – A Modern Introduction to Probability and Statistics
  • Book: Heumann, Schomaker & Shalabh – Introduction to Statistics and Data Analysis
  • Book: Cowpertwait & Metcalfe – Introductory Time Series with R
  • Book: Wasserman – All of Nonparametric Statistics
  • Book: Wasserman – All of Statistics
  • Tutorial: Professor Leonard – Statistics
  • Book: Hastie – Elements of Statistical Learning
  • Tutorial: Simplilearn – Statistics for ML

Status: Online

All pages will be updated and added to, thank you for your patience!

Categories

Quick Links:

  • ML Tutorials
  • ML Everyday Challenge – Anjum Ismail
  • ML Discussions
  • ML Applications
  • ML News
  • ML Ops
  • ML Books
  • ML Careers
  • ML Researchers
  • ML Podcasts
  • ML Papers
  • ML Domains
  • ML Ethics
  • ML Certificate Programs
  • ML Degree Programs

Recent Posts:

  • Tutorials: Towards AI – Machine Learning Fundamentals
  • Tutorial: KDnuggets – Retraining the Model
  • Tutorial: Siddhardhan – Machine Learning Models
  • Tutorial: Siddhardhan – Machine Learning Projects
  • Tutorial: Siddhardhan – Python Basics for Machine Learning

RSS arxiv.org Computer Science – ML RSS Feed

  • Gene-SGAN: a method for discovering disease subtypes with imaging and genetic signatures via multi-view weakly-supervised deep clustering. (arXiv:2301.10772v1 [q-bio.QM])
  • Truthful Self-Play. (arXiv:2106.03007v5 [stat.ML] UPDATED)
  • MusicLM: Generating Music From Text. (arXiv:2301.11325v1 [cs.SD])
  • Anatomy-aware and acquisition-agnostic joint registration with SynthMorph. (arXiv:2301.11329v1 [eess.IV])
  • A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations. (arXiv:1809.02362v3 [math.NA] UPDATED)

RSS arxiv.org Statistics – ML RSS Feed

  • Evaluating Probabilistic Classifiers: The Triptych. (arXiv:2301.10803v1 [stat.ME])
  • KSD Aggregated Goodness-of-fit Test. (arXiv:2202.00824v5 [stat.ML] UPDATED)
  • Neural Continuous-Discrete State Space Models for Irregularly-Sampled Time Series. (arXiv:2301.11308v1 [cs.LG])
  • Extending Adversarial Attacks to Produce Adversarial Class Probability Distributions. (arXiv:2004.06383v3 [cs.LG] UPDATED)
  • Truthful Self-Play. (arXiv:2106.03007v5 [stat.ML] UPDATED)

Sites We Like:

  • madewithml
  • Mr. Daniel Bourke
  • Tech with Tim
  • https://pythonprogramming.net
  • geeksforgeeks
  • mlexpert
  • Chip Huyen
  • /r/MachineLearning
  • /r/LearnMachineLearning
  • machinelearningmastery
  • paperswithcode
  • towardsai
  • kdnuggets
  • Analytics Vidhya
  • William Rinehart – Resource DB

YouTube Channels We Like

  • Sentdex
  • freeCodeCamp.org
  • Clément Mihailescu
  • Tech With Tim
  • 3Blue1Brown
  • Aaron Jack
  • Statquest with Josh Starmer
  • Ken Jee
  • Daniel Bourke
  • DeepLearningAI
  • Mike Dane
  • Khan Academy
  • Keith Galli
  • Lex Fridman
  • Professor Leonard
  • Part Time Larry
  • Jon Krohn
  • Tübingen Machine Learning
  • Shai Ben-David
  • Krish Naik

Help support this site:

Buy me a coffee

©2023 machinelearning.to