Skip to content
Menu
machinelearning.to
  • Home
  • Contact
machinelearning.to

Machine Learning Specialist

  1. The need to scale ML models
  2. Design patterns for scalable ML applications
  3. Deploying ML models as services
  4. Running ML services in containers
    1. Docker
  5. Scaling ML services with Kubernetes
  6. ML services in production
  7. Conclusion

Status: Online

All pages will be updated and added to, thank you for your patience!

Categories

Quick Links:

  • ML Tutorials
  • ML Everyday Challenge – Anjum Ismail
  • ML Discussions
  • ML Applications
  • ML News
  • ML Ops
  • ML Books
  • ML Careers
  • ML Researchers
  • ML Podcasts
  • ML Papers
  • ML Domains
  • ML Ethics
  • ML Certificate Programs
  • ML Degree Programs

Recent Posts:

  • Tutorials: Towards AI – Machine Learning Fundamentals
  • Tutorial: KDnuggets – Retraining the Model
  • Tutorial: Siddhardhan – Machine Learning Models
  • Tutorial: Siddhardhan – Machine Learning Projects
  • Tutorial: Siddhardhan – Python Basics for Machine Learning

RSS arxiv.org Computer Science – ML RSS Feed

  • CSwin2SR: Circular Swin2SR for Compressed Image Super-Resolution. (arXiv:2301.08749v1 [eess.IV])
  • Autoencoding Hyperbolic Representation for Adversarial Generation. (arXiv:2201.12825v3 [cs.LG] UPDATED)
  • Discriminative Multimodal Learning via Conditional Priors in Generative Models. (arXiv:2110.04616v3 [cs.LG] UPDATED)
  • Improving Spectral Clustering Using Spectrum-Preserving Node Aggregation. (arXiv:2110.12328v6 [cs.LG] UPDATED)
  • Predictive Model for Gross Community Production Rate of Coral Reefs using Ensemble Learning Methodologies. (arXiv:2111.04003v2 [cs.LG] UPDATED)

RSS arxiv.org Statistics – ML RSS Feed

  • Active Learning of Piecewise Gaussian Process Surrogates. (arXiv:2301.08789v1 [cs.LG])
  • Indirect Active Learning. (arXiv:2206.01454v3 [math.ST] UPDATED)
  • Prediction-Powered Inference. (arXiv:2301.09633v1 [stat.ML])
  • Learning Interpretable Models Using an Oracle. (arXiv:1906.06852v5 [cs.LG] UPDATED)
  • Probabilistic Surrogate Networks for Simulators with Unbounded Randomness. (arXiv:1910.11950v3 [cs.LG] UPDATED)

Sites We Like:

  • madewithml
  • Mr. Daniel Bourke
  • Tech with Tim
  • https://pythonprogramming.net
  • geeksforgeeks
  • mlexpert
  • Chip Huyen
  • /r/MachineLearning
  • /r/LearnMachineLearning
  • machinelearningmastery
  • paperswithcode
  • towardsai
  • kdnuggets
  • Analytics Vidhya
  • William Rinehart – Resource DB

YouTube Channels We Like

  • Sentdex
  • freeCodeCamp.org
  • Clément Mihailescu
  • Tech With Tim
  • 3Blue1Brown
  • Aaron Jack
  • Statquest with Josh Starmer
  • Ken Jee
  • Daniel Bourke
  • DeepLearningAI
  • Mike Dane
  • Khan Academy
  • Keith Galli
  • Lex Fridman
  • Professor Leonard
  • Part Time Larry
  • Jon Krohn
  • Tübingen Machine Learning
  • Shai Ben-David
  • Krish Naik

Help support this site:

Buy me a coffee

©2023 machinelearning.to