Skip to content
Menu
machinelearning.to
  • Home
  • Contact
machinelearning.to

Machine Learning Specialist

  1. The need to scale ML models
  2. Design patterns for scalable ML applications
  3. Deploying ML models as services
  4. Running ML services in containers
    1. Docker
  5. Scaling ML services with Kubernetes
  6. ML services in production
  7. Conclusion

Status: Online

All pages will be updated and added to, thank you for your patience!

Categories

Quick Links:

  • ML Tutorials
  • ML Everyday Challenge – Anjum Ismail
  • ML Discussions
  • ML Applications
  • ML News
  • ML Ops
  • ML Books
  • ML Careers
  • ML Researchers
  • ML Podcasts
  • ML Papers
  • ML Domains
  • ML Ethics
  • ML Certificate Programs
  • ML Degree Programs

Recent Posts:

  • Tutorials: Towards AI – Machine Learning Fundamentals
  • Tutorial: KDnuggets – Retraining the Model
  • Tutorial: Siddhardhan – Machine Learning Models
  • Tutorial: Siddhardhan – Machine Learning Projects
  • Tutorial: Siddhardhan – Python Basics for Machine Learning

RSS arxiv.org Computer Science – ML RSS Feed

  • Dark Solitons in Bose-Einstein Condensates: A Dataset for Many-body Physics Research. (arXiv:2205.09114v1 [cond-mat.quant-gas])
  • A Causal Bandit Approach to Learning Good Atomic Interventions in Presence of Unobserved Confounders. (arXiv:2107.02772v2 [cs.LG] UPDATED)
  • SEMI: Self-supervised Exploration via Multisensory Incongruity. (arXiv:2009.12494v2 [cs.LG] UPDATED)
  • Challenges in Deploying Machine Learning: a Survey of Case Studies. (arXiv:2011.09926v3 [cs.LG] UPDATED)
  • Learning Multiscale Convolutional Dictionaries for Image Reconstruction. (arXiv:2011.12815v3 [cs.CV] UPDATED)

RSS arxiv.org Statistics – ML RSS Feed

  • Dark Solitons in Bose-Einstein Condensates: A Dataset for Many-body Physics Research. (arXiv:2205.09114v1 [cond-mat.quant-gas])
  • Universal Lower Bound for Learning Causal DAGs with Atomic Interventions. (arXiv:2111.05070v4 [cs.LG] UPDATED)
  • Spurious Local Minima of Deep ReLU Neural Networks in the Neural Tangent Kernel Regime. (arXiv:1806.04884v3 [stat.ML] UPDATED)
  • Bayesian Network Structure Learning using Digital Annealer. (arXiv:2006.06926v3 [cs.LG] UPDATED)
  • Spherical Perspective on Learning with Normalization Layers. (arXiv:2006.13382v3 [cs.LG] UPDATED)

Sites We Like:

  • madewithml
  • Mr. Daniel Bourke
  • Tech with Tim
  • https://pythonprogramming.net
  • geeksforgeeks
  • mlexpert
  • Chip Huyen
  • /r/MachineLearning
  • /r/LearnMachineLearning
  • machinelearningmastery
  • paperswithcode
  • towardsai
  • kdnuggets
  • Analytics Vidhya
  • William Rinehart – Resource DB

YouTube Channels We Like

  • Sentdex
  • freeCodeCamp.org
  • Clément Mihailescu
  • Tech With Tim
  • 3Blue1Brown
  • Aaron Jack
  • Statquest with Josh Starmer
  • Ken Jee
  • Daniel Bourke
  • DeepLearningAI
  • Mike Dane
  • Khan Academy
  • Keith Galli
  • Lex Fridman
  • Professor Leonard
  • Part Time Larry
  • Jon Krohn
  • Tübingen Machine Learning
  • Shai Ben-David
  • Krish Naik

Help support this site:

Buy me a coffee

©2022 machinelearning.to